Classes of Inverse Semirings and its Ordering

G. Rajeswari¹, T. Vasanthi²

Department of Applied Mathematics^{1,2}, Yogi Vemana University^{1,2}, Kadapa, Andhra Pradesh, India Email:grajeswariyvu@gmail.com¹,vasanthi_thatimakula@yahoo.co.in²

Abstract- In this paper we study the conditions under which an additively inverse semiring is a band and commutative. Also in the case of totally ordered additive inverse semiring in which (S,+) is positively totally ordered, we prove the additive structure is $a+b=b+a=\max(a,b)$ for all a,b in S. We have also framed an example for this result by considering 4 elements.

Index Terms - Additive inverse semiring; zero-square semiring; positively totally ordered semiring.

1. INTRODUCTION

Additive and multiplicative structures play an important role in determining the structure of semiring. If the multiplicative structure of a semiring is a rectangular band, then its additive structure is a band. Karvellas [4] proved that if the additively inverse semiring contains right multiplicative identity, then its additive structure is commutative. In [9] Zeleznekow studied additive inverse semirings and examined the conditions under which (S,+) is a semilattice. In this paper we study the conditions under which (S,+) is a commutative band and determine the structure of additively inverse semiring [4], [8] if (S,+) is positively totally ordered [1],[2], [5],[6].

2. PRELIMINARIES

In this section, we have given some important definitions that are used in the theorems which are stated and proved in the following sections.

Definition 2.1

A triple $(S,+,\cdot)$ is called a semiring if (S,+) is a semigroup; (S,\cdot) is a semigroup; a(b+c) = ab+ac and (b+c)a = ba+ca for every a,b,c in S. The two operations + and \cdot are called additive and multiplicative operations respectively.

Definition 2.2

A semiring $(S,+,\cdot)$ is called an additive inverse semiring if (S,+) is an inverse semigroup that is for each $a \in S$ there exists a unique element $a' \in S$ such that a+a'+a=a and a'+a+a'=a'.

Definition 2.3

In a totally ordered semiring $(S, +, \cdot, \leq)$

- (i) $(S, +, \leq)$ is positively totally ordered (p.t.o), if $a+x \ge a, x$ for all a, x in S.
- (ii) (S, \cdot, \leq) is positively totally ordered (p.t.o), if $ax \ge a, x$ for all a, x in S.
- (iii) $(S, +, \leq)$ is negatively totally ordered (n.t.o), if $a+x \leq a, x$ for all a, x in S.
- (iv) (S, \cdot, \leq) is negatively totally ordered (n.t.o) if $ax \leq a, x$ for all a, x in S.

Definition 2.4

A semiring S is Positive Rational Domain (PRD) if (S, \cdot) is an abelian group.

Definition 2.5

Zeroid of a semiring $(S,+,\cdot)$ is the set of all x in S such that x + y = y or y + x = y for some y in S. we may also term this as the zeroid of (S,+) and it is denoted by Zd.

Definition 2.6

A semiring S with multiplicative zero is said to be a zero square semiring if $a^2 = 0$ for all a in S.

Definition 2.7

A semigroup (S, +) is commutative if a + x = x + afor all a, x in S.

A semigroup (S, \cdot) is commutative if ax = xa for all a, x in S.

Definition 2.8

International Journal of Research in Advent Technology, Vol.7, No.2, February 2019 E-ISSN: 2321-9637 Available online at www.ijrat.org

A semigroup (S, +) is additively idempotent if a + a = a for all a in S.

Definition 2.9

An element a in a semigroup (S,+) is periodic if ma = na where m and n are positive integers. A semigroup (S,+) is periodic if every one of its elements is periodic.

Definition 2.10

A semigroup (S, +) is band if a + a = a for all a in S

A semigroup (S, \cdot) is band if $a^2 = a$ for all a in S

Definition 2.11

A semiring S is said to be mono semiring if

a+b=ab for all a,b in S.

Note: Undefined concepts refer [3]

3. STRUCTURE OF ADDITIVE INVERSE SEMIRINGS

Theorem 3.1. Let $(S, +, \cdot)$ be an additively inverse *PRD. Then* (S, +) *is a commutative band.*

Proof. Let $a \in S$. Then there exists $a' \in S$ Such that a + a' + a = a $\Rightarrow a + a' + a + a' = a + a'$ $\Rightarrow (a + a') \cdot 1 + (a + a') \cdot 1 = a + a'$ $\Rightarrow (a + a')(1 + 1) = (a + a') \cdot 1$ $\Rightarrow 1 + 1 = 1$, since (S, \cdot) is a group. $\Rightarrow b(1+1) = b.1$ for all $b \in S$ $\Rightarrow b + b = b$ Therefore (S, +) is a band Similarly by taking a' + a + a' = a', we can prove that (S, +) is a band. Using theorem 4(1) of [4], (S, +) is a commutative.

Hence (S, +) is commutative band.

Theorem 3.2. Let $(S,+,\cdot)$ be an additive inverse semiring. Then the zeroid of $(S,+) = Zd = \{a+a'/a \in S\}$ is a multiplicative ideal.

Proof. a = a + (a' + a) also a' = a' + (a + a')Therefore a' + a and $a + a' \in Zd$ Now we prove that Zd is a multiplicative ideal. Let $s \in S$ a = a + a' + a implies sa = sa + sa' + sa = sa + s(a' + a) $\Rightarrow s(a' + a) \in Zd$ Also a' = a' + a + a' implies sa' = sa' + sa + sa' = sa' + s(a + a') $\Rightarrow s(a + a') \in Zd$ Similarly $(a + a')s \in Zd$ Therefore Zd is a multiplicative ideal.

Theorem 3.3. Let *S* be an additive inverse semiring. If (S, \cdot) is a band, then aa' and a'a are additively periodic elements.

Proof. Given that *S* is an additive inverse semiring $a + a' + a = a \Rightarrow a^2 + aa' + a^2 = a^2$ since (S, \cdot) is a band then $a^2 = a, a'^2 = a'$ for all $a \in S$ $a + aa' + a = a \Rightarrow aa' + aa'^2 + aa' = aa'$ $\Rightarrow aa' + aa' + aa' = aa' \Rightarrow 3aa' = aa'$ Thus aa' is additive periodic Also $a' + a + a' = a' \Rightarrow a'^2 + a'a + a'^2 = a'^2$ $\Rightarrow a' + a'a + a' = a' \Rightarrow a'a + a'a^2 + a'a = a'a$ $\Rightarrow a'a + a'a + a'a = a'a \Rightarrow 3a'a = a'a$ Thus a'a is additive periodic.

Theorem 3.4. If S is an additive inverse semiring and (s, \cdot) is rectangular band, then following identities are true.

(i) $a + a'a^{2} + a = a$ (ii) aa' + a' + aa' = aa'(iii) $a'^{2}a + a'a^{2} + a'^{2} + a = a'^{2}a$

Proof. Given that S is an additive inverse semiring a + a' + a = a $a^2 + a'a + a^2 = a^2$ $a^3 + a'a^2 + a^3 = a^3$ Since (s, \cdot) is rectangular band $a + a'a^2 + a = a$ By using above condition (i) $\Rightarrow aa' + a'a^2a' + aa' = aa'$ aa' + a' + aa' = aa'By using above condition (i) $\Rightarrow a'a + a'^2a^2 + a'a = a'a$ $a'^2a + a'^3a^2 + a'^2a = a'^2a$ International Journal of Research in Advent Technology, Vol.7, No.2, February 2019 E-ISSN: 2321-9637 Available online at www.ijrat.org

4. STRUCTURE OF TOTALLY ORDERED SEMIRINGS

Theorem 4.1. If S is a totally ordered additive inverse semiring and (S,+) is positively totally ordered (p.t.o), then

(i) a = a' for all $a \in S$

(ii) (S,+) is a band.

(*iii*) $a+b=b+a=\max(a,b)$.

Proof. (i) Since S is an additive inverse semiring for each $a \in S$ there exists $a' \in S$ such that $a = a + a' + a \ge a'$, since (S, +) is p.t.o (1) Also $a' = a' + a + a' \ge a + a' \ge a$ (2) Using (1) and (2) a = a' for all $a \in S$.

(*ii*) $a = a + a' + a \ge a + a' \ge a$ since (S, +) is p.t.o Therefore a = a + a' (3) Now a = a + a' + a = a + a using (3) Hence (S, +) is a band.

(*iii*) Let $a, b \in S$ Suppose a < bThen $a + a \le a + b \le b + b$ $\Rightarrow a \le a + b \le b$ since (S, +) is a band. (4) From (4) $a + b \le b$ (5) Since (S, +) is p.t.o, $a + b \ge b$ (6) From (5) and (6) $a + b = b = \max(a, b)$

Also a < b implies $a + a \le b + a \le b + b$ $\Rightarrow a \le b + a \le b$

Since (S,+) is p.t.o, $b+a \ge b$ (8)

(7)

From (7) and (8) b + a = b.

Similarly we can prove that $a+b=b+a=\max(a,b)$ if b < a.

Theorem 4.2. If S is a totally ordered multiplicative inverse semiring and (S, \cdot) is positively totally ordered, then

- (i) $a = a^*$ for all $a \in S$
- (ii) (S, \cdot) is a band.
- (*iii*) $ab = ba = \max(a, b)$.

Proof. (i) Since S is an additive inverse semiring for each $a \in S$ there exists $a' \in S$ such that $a = aa^*a$ and $a = a^*aa^*$ now $a = aa^*a \ge aa^* \ge a^*$, since (S, \cdot) is p.t.o. (9) also $a^* = a^*aa^* \ge a^*a \ge a$ (10) using (9) and (10) $a = a^*$ for all $a \in S$

(*ii*) $a = aa^*a = aa = a^2$ hence (S, \cdot) is a band

(*iii*)
$$a, b \in S$$

Suppose $a < b$
then $a^2 \le ab \le b^2$
 $\Rightarrow a \le ab \le b$ since (S, \cdot) is a band (11)
 $ab \ge b$ (12)
from (11) and (12) $ab = b = \max(a, b)$
also $ba = b = \max(a, b)$

similarly we can prove $ab = ba = \max(a, b)$ if b < a

Proposition 4.3. Let $(S,+,\cdot)$ is doubly inverse semiring. If (S,+) and (S,\cdot) are positively totally ordered, then $a+b=b+a=ab=ba=\max(a,b)$ and hence S is mono semiring.

Proof. In the above theorem $a+b=b+a=\max(a,b)$ Since (S, \cdot) is an inverse semiring and p.t.o. $a = aa'a \ge aa' \ge a$ (13)Also $a' = a'aa' \ge a'a \le a$ (14)From (13) and (14) a = a'Also $a = aa'a \ge aa' \ge a$ Therefore $a = aa' = a^2$ since a' = aSuppose a < b $\Rightarrow a^2 \le ab \le b^2 \Rightarrow a \le ab \le b$ (15)Since *S* is p.t.o $ab \ge b$ (16)From (15) and (16) $ab = b = \max(a, b)$

Then if b < a, we compare that $ab = a = \max(a, b)$

Theorem 4.4. Let $(S,+,\cdot)$ be a totally ordered additive inverse semiring. If S contains the multiplicative identity, then (S,+) is a commutative band.

Proof. Using proposition 1 of [7]

International Journal of Research in Advent Technology, Vol.7, No.2, February 2019 E-ISSN: 2321-9637 Available online at www.iirat.org

Available online at www.ijrat.org

(S,+) is non-negatively ordered or non-positively ordered.

Suppose (S,+) is non-negatively ordered $a = a + a' + a = a + a + a' \ge a + a'$ by using theorem 4 (1) of [4] Also $a' = a' + a + a' = a + a' + a' \ge a + a'$ $a + a' \le a$ and $a + a' \le a'$ (17) From (11) $a + a' \le a$ $\Rightarrow a' + a + a' \le a' + a = a + a'$, since (S,+) is commutative $\Rightarrow a' \le a + a'$ (18) From (17) and (18), a + a' = a a = a + a' + a = a + aTherefore (S,+) is a band.

Similarly we can prove the theorem if (S, +) is non-positively ordered.

Example 4.5. The following example $\{i, j, k, l\}$ with l < k < j < i satisfies the conditions of theorem 4.1 in which (S, +) is p.t.o and S is also a mono semiring. This example also satisfies the conditions of theorem 4.4.

+	i	j	k	1			
i	i	j	k	1			
j	j	j	k	1			
k	k	k	k	1			
1	1	1	k	1			
	i	j	k	1			
i	i	j	k	1			
j	j	j	k	1			
k	k	k	k	1			
1	1	1	1	1			

Theorem 4.6. If *S* satisfies the conditions of theorem 4.1 and *S* is a zero square semiring with additive identity 0, then $S^2 = \{0\}$.

Proof. By (iii) of theorem 4.1 $a+b=b+a = \max(a,b)$ Suppose a < bThen a+b=b+a=b a+b=b implies $\Rightarrow (a+b)b=b \cdot b$ $\Rightarrow ab+b^{2}=b^{2}$ $\Rightarrow ab+0=0$ Therefore ab=0Also $b(a+b)=b \cdot b$ $\Rightarrow ba+b^{2}=b^{2}$ $\Rightarrow ba+0=0$ Therefore ba=0Hence $S^{2} = \{0\}$

Example 4.7. The below tables satisfies the conditions of the theorem 4.6 with m < l < k < j < i.

+	i	j	k	1	m			
i	i	i	i	i	i			
j	i	j	j	j	j			
k	i	j	k	k	k			
1	i	j	k	1	1			
m	i	j	k	1	m			
	i	j	k	1	m			
i	m	m	m	m	m			
j	m	m	m	m	m			
k	m	m	m	m	m			
1	m	m	m	m	m			
m	m	m	m	m	m			

Theorem 4.8. Let $(S,+,\cdot)$ be a totally ordered additively inverse semiring. If (S,\cdot) is positively totally ordered, then the following are true.

- (i) $(ab)' \ge a$ and $(ab)' \ge b$
- (ii) $ab \ge a'$ and $ab \ge b'$
- $(iii) (a+b)' \le (a+a)b$
- (iv) $(a+b)' \le ab$ if (S,+) is a band.

Proof.

(i) $(ab)' = ab' \ge a$, since (S, \cdot) is p.t.o. $(ab)' = a'b \ge b$, since (S, \cdot) is p.t.o.

- (*ii*) $ab = a'b' \ge a'$ and $ab = a'b' \ge b'$, since (S, \cdot) is p.t.o.
- (*iii*) $(a+b)' = b' + a' \le ab + ab = (a+a)b$, using (ii)
- (*iv*) From (iii) $(a+b)' \le (a+a)b$ if (S,+) is a band a+a=a hence $(a+b)' \le ab$.

REFERENCES

- Amala, M; Sulochana, N; Vasanthi, T. (2016): Classes of Regular Semiring. IOSR Journal of Mathematics, 12(5-1), pp. 70-71.
- [2] Amala, M; Vasanthi, T. (2015): Idempotent property of Semirings. Journal of Pure Algebra, 5 (9), pp. 156-159.
- [3] Jonathan, S; Golan. Semirings and their Applications Kluwer Academic Publisheres.
- [4] Karvellas, P.H. (1974): Inverse Semirings. J. Austral. Math. Soc. 18, pp. 277-288
- [5] Satyanarayana, M. (1979): Positively Ordered Semigroups. Lecture notes in Pure and Applied Mathematics, Marcel Dekker, Inc., Vol.42
- [6] Satyanarayana, M. (1981): On the additive semigroup structure of Semirings. Semigroup Forum, Vol. 23, pp. 7-14.
- [7] Satyanarayana, M. (1985): On the additive semigroup of ordered Semirings. Semigroup Forum, Vol. 31, pp. 193-199.
- [8] Sen, M.K; Maity, S.K. (2006): Regular additively inverse semirings. Acta Math. Univ. Comenianac, Vol. LXXV, (1), pp.137-146.
- [9] Zeleznekow, J. (1981): Regular Semirings, Semigroup Forum, Vol. 23, pp. 119-136.